Assembling And Structural Identification of Graphene and Brophene Silver Oxide-Based Nano Composites for Environment Protection and Photo Catalysis and Treatment of Lethal Material

Authors

  • Muhammad Asif M.Phil. Chemistry Ripah International University Islamabad, Pakistan. Author
  • Sahrish Arshad M.Phil. Chemistry, University of Agriculture Faisalabad, Pakistan. Author
  • Amna Sehar Ph.D. Chemistry Scholar, Department of Chemistry at Government College University Faisalabad, Pakistan. Author
  • Ghulam Ali MSc Chemistry, Govt Collage University Faisalabad, Pakistan. Author

Keywords:

graphene, brophene silver, oxide-based Nano composites, environment protection, photo catalysis, lethal material

Abstract

The best carbon two-dimensional materials are graphene oxide and borophene oxide, which have special optical, electrical, mechanical, and fundamental thermal characteristics and may be combined to make composite materials under various favourable conditions. We produced the graphene and borophene nano composite for this work using a few unique oxides based on silver. The fundamentally optimal methods the manufacture of graphene from carbon ore graphite powder was chosen to use the Hummer technique. It was ascorbic acid that converted this graphene into its reduced form. The characteristics of graphene and brophene increase as they are reduced to their reduced graphene state, leading to a planar distance increase. The nanocomposite of graphene and borophene was being created using the Turkevich type technique.  Confirmation of the distinct functional group in the product was detected using Fourier transform infrared spectroscopy. The authenticity of these compounds is further supported by their XRD spectra. Comparable methods reveal that the Raman spectra's D and G band values are lower than their true values. Based on oxide composite based on silver, the results demonstrated a degradation of the methylene blue dye of up to 74.34%. Thus, it was determined that the substance being assembled would be used for the breakdown and degradation of another deadly contaminant found in industrial wastewater.

References

Abbas M., Hussain T., Iqbal J., Rehman A. U., Zaman M. A., Jilani K., Masood N., Al-Mijalli S. H., Iqbal M.,Nazir A. Synthesis of silver nanoparticle from Allium sativum as an eco-benign agent for biological applications. Pol. J. Environ. Stud. 2022, 31, 533–538.

Ajeesha T., Ashwini A., George M., Manikandan A., Mary J. A., Slimani Y., Almessiere M., Baykal A.Nickel substituted MgFe2O4 nanoparticles via co-precipitation method for photocatalytic applications. Phys. B: Condens. Matter 2021, 606, 412660.

Al Banna L. S., Salem N. M., Jaleel G. A., Awwad A. M. Green synthesis of sulphurs nanoparticles using Rosmarinus officinal is leaves extract and nematicidal activity against Meloidogyne javanica. Chem.Int. 2020, 6, 137–143.

Alahmari F., Rehman S., Almessiere M., Khan F. A., Slimani Y., Baykal A. Synthesis of Ni0.5Co0.5-xCdxFe1.78Nd0.02O4 (x ≤ 0.25) nanofibers by using electrospinning technique induce anti cancer and anti-bacterial activities. J. Biomol. Struct. Dyn. 2021, 39, 3186–3193.

Alam S. N., Sharma N., Kumar L. Synthesis of graphene oxide (GO) by modified hummers method and its thermal reduction to obtain reduced graphene oxide (rGO). Graphene 2017, 6, 1–18.

AL-Dharob M. H., Mouhamad R. S., Al Khafaji K. A., Al-Abodi E. E. Antibacterial efficacy of cotton nanofiber soaked in Ag, ZnO and TiO2 nanoparticles. Chem. Int. 2022, 8, 58–67.

Ali F. A. A., Alam J., Shukla A. K., Alhoshan M., Ansari M. A., Al-Masry W. A., Rehman S., Alam M. Evaluation of antibacterial and antifouling properties of silver-loaded GO polysulfone nanocomposite membrane against Escherichia coli, Staphylococcus aureus, and BSA protein. React. Funct. Polym. 2019, 140, 136–147.

Ali F., Hamza M., Iqbal M., Basha B., Alwadai N., Nazir A. State-of-art of silver and gold nanoparticles synthesis routes, characterization and applications: a review. Z. Phys. Chem. 2022, 236, 291–326.

Aljameel S. S., Almessiere M. A., Khan F. A., Taskhandi N., Slimani Y., Al-Saleh N. S., Manikandan A.,Alishaimi E. A., Baykal A. Synthesis, characterization, anti-cancer analysis of Sr0.5Ba0.5DyxSmxFe8−2xO19 (0.00≤ x≤ 1.0) microsphere nano composites. Nanomaterials 2021, 11, 700.

Amer M. W., Awwad A. M. Green synthesis of copper nanoparticles by Citrus limon fruits extract, characterization and antibacterial activity. Chem. Int. 2021, 7, 1–8.

and Fe doped LaNiO3 and their photocatalyst efficacy for methyl green oxidation under visible light

Awwad A. M., Amer M. W. Biosynthesis of copper oxide nanoparticles using Ailanthus altissima leaf extract and antibacterial activity. Chem. Int. 2020, 6, 210–217.

Awwad A. M., Amer M. W., Salem N. M., Abdeen A. O. Green synthesis of zinc oxide nanoparticles (ZnO-NPs) using Ailanthus altissima fruit extracts and antibacterial activity. Chem. Int. 2020, 6,

Awwad A. M., Salem N. M., Aqarbeh M. M., Abdulaziz F. M. Green synthesis, characterization of silver sulphide nanoparticles and antibacterial activity evaluation. Chem. Int. 2020, 6, 42–48.

Bhatti H. N., Hayat J., Iqbal M., Noreen S., Nawaz S. Biocomposite application for the phosphate ions removal in aqueous medium. J. Mater. Res. Technol. 2018, 7, 300–307.

Bhatti H. N., Safa Y., Yakout S. M., Shair O. H., Iqbal M., Nazir A. Efficient removal of dyes using carboxymethyl cellulose/alginate/polyvinyl alcohol/rice husk composite: adsorption/desorption, kinetics and recycling studies. Int. J. Biol. Macromol. 2020, 150, 861–870.

Chigondo M., Chigondo F., Nyamunda B. Synthesis of hydrous CeO2 polypyrrole nanocomposite as a rapid and efficient adsorbent for defluoridation of drinking water. Environ. Nanotechnol. Monit.Manag. 2021, 16, 100462.

Choker A. A., Achugwo C. N. Distribution, source identification and eco-toxicological risks of PAHs in sediments of Aba River at Ogbor-Hill region, Nigeria. Chem. Int. 2022, 8, 47–57.

Dimiev A. M., Tour J. M. Mechanism of graphene oxide formation. ACS Nano 2014, 8, 3060–3068.

Elsherif K. M., El-Dali A., Alkarewi A. A., Mabrok A. Adsorption of crystal violet dye onto olive leaves powder: equilibrium and kinetic studies. Chem. Int. 2021, 7, 79–89.

George M., Ajeesha T., Manikandan A., Anantharaman A., Jansi R., Kumar E. R., Slimani Y., Almessiere M., Baykal A. Evaluation of Cu–MgFe2O4 spinel nanoparticles for photocatalytic and antimicrobial activates. J. Phys. Chem. Solid. 2021, 153, 110010.

Gunasekaran S., Thanrasu K., Manikandan A., Durka M., Dinesh A., Anand S., Shankar S., Slimani Y.,Almessiere M. A., Baykal A. Structural, fabrication and enhanced electromagnetic wave absorption properties of reduced graphene oxide (rGO)/zirconium substituted cobalt ferrite (Co0·5Zr0·5Fe2O4) Nano composites. Phys. B: Condens. Matter 2021, 605, 412784.

Hsiao M.-C., Ma C.-C. M., Chiang J.-C., Ho K.-K., Chou T.-Y., Xie X., Tsai C.-H., Chang L.-H., Hsieh C.-K.Thermally conductive and electrically insulating epoxy nanocomposites with thermally reduced graphene oxide–silica hybrid nanosheets. Nanoscale 2013, 5, 5863–5871.

Idika D., Ndukwe N., Ogukwe C. Appraisal of bed height and flow rate effect on the removal of dyes on Pine biomass. Chem. Int. 2022, 8, 42–46.

Iqbal S., Bibi I., Majid F., Kamal S., Iqbal M., Alfryyan N. Graphene oxide (GO) nanocomposite with Gd

Jalal G., Abbas N., Deeba F., Butt T., Jilal S., Sarfraz S. Efficient removal of dyes in textile effluents using aluminum-based coagulants. Chem. Int. 2021, 7, 197–207.

Kausar A., Zohra S. T., Ijaz S., Iqbal M., Iqbal J., Bibi I., Nouren S., El Messaoudi N., Nazir A. Cellulose-based materials and their adsorptive removal efficiency for dyes: a review. Int. J. Biol. Macromol. 2023,224, 1337–1355.

Khawaja H., Zahir E., Asghar M. A., Asghar M. A. Graphene oxide, chitosan and silver nanocomposite as a highly effective antibacterial agent against pathogenic strains. Colloids Surf. A 2018, 555, 246–255.

Kumar A., Yasin G., Vashistha V. K., Das D. K., Rehman M. U., Iqbal R., Mo Z., Nguyen T. A., Slimani Y.,Nazir M. T., Zhao W. Enhancing oxygen reduction reaction performance via CNTs/graphene supported iron protoporphyrin IX: a hybrid Nano architecture electrocatalyst. Diamond Relat. Mater.2021, 113, 108272.

Menazea A. A., Ezzat H. A., Omara W., Basyouni O. H., Ibrahim S. A., Mohamed A. A., Tewfik W.,Ibrahim M. A. Chitosan/graphene oxide composite as an effective removal of Ni, Cu, As, Cd and Pbfrom wastewater. Compute. Theor. Chem. 2020, 1189, 112980.

Naeem H., Ajmal M., Qureshi R. B., Muntha S. T., Farooq M., Siddiq M. Facile synthesis of graphene oxide–silver nanocomposite for decontamination of water from multiple pollutants by adsorption, catalysis and antibacterial activity. J. Environ. Manag. 2019, 230, 199–211.

Naseer A., Iqbal M., Ali S., Nazir A., Abbas M., Ahmad N. Green synthesis of silver nanoparticles using Allium cepa extract and their antimicrobial activity evaluation. Chem. Int. 2022, 8, 89–94.

Naseer F., Zahir E., Danish E. Y., Gull M., Noman S., Soomro M. T. Superior antibacterial activity of reduced graphene oxide upon decoration with iron oxide nanorods. J. Environ. Chem. Eng. 2020, 8,104424.

Nazir A., Raza M., Abbas M., Abbas S., Ali A., Ali Z., Younas U., Al-Mijalli S. H., Iqbal M. Microwave assisted green synthesis of ZnO nanoparticles using Rumex dentatus leaf extract: photocatalytic and antibacterial potential evaluation. Z. Phys. Chem. 2022, 236, 1203–1217.

Neolaka Y. A. B., Lawa Y., Naat J. N., Riwu A. A. P., Iqbal M., Darmokoesoemo H., Kusuma H. S. The adsorption of Cr(VI) from water samples using graphene oxide-magnetic (GO-Fe3O4) synthesized from natural cellulose-based graphite (kusambi wood or Schleichera oleos a): study of kinetics, isotherms and thermodynamics. J. Mater. Res. Technol. 2020, 9, 6544–6556.

Noreen S., Ismail S., Ibrahim S. M., Kusuma H. S., Nazir A., Yaseen M., Khan M. I., Iqbal M. ZnO, CuO and Fe2O3 green synthesis for the adsorptive removal of direct golden yellow dye adsorption: kinetics,equilibrium and thermodynamics studies. Z. Phys. Chem. 2021, 235, 1055–1075.

Pei S., Cheng H.-M. The reduction of graphene oxide. Carbon 2012, 50, 3210–3228.

Pei S., Zhao J., Du J., Ren W., Cheng H.-M. Direct reduction of graphene oxide films into highly conductive and flexible graphene films by hydrohalic acids. Carbon 2010, 48, 4466–4474.

Pusty M., Rana A. K., Kumar Y., Sathe V., Sen S., Shirage P. Synthesis of partially reduced graphene oxide/silver nanocomposite and its inhibitive action on pathogenic fungi grown under ambient conditions. ChemistrySelect 2016, 1, 4235–4245.

Salem N. M., Awwad A. M. Green synthesis and characterization of ZnO nanoparticles using Solanum rantonnetii leaves aqueous extract and antifungal activity evaluation. Chem. Int. 2022, 8, 12–17.

Sharif S., Zaman Q. u., Hassan F., Javaid S., Arif K., Mansha M. Z., Ehsan N., Nazir S., Gul R., Iqbal M.,Nazir A. Coagulation of metallic pollutants from wastewater using a variety of coagulants based on metal binding interaction studies. Z. Phys. Chem. 2021, 235, 467–481.

Tan S., Wu X., Xing Y., Lilak S., Wu M., Zhao J. X. Enhanced synergetic antibacterial activity by a reduce graphene oxide/Ag nanocomposite through the photothermal effect. Colloids Surf. B 2020, 185, 110616.

Tang J., Chen Q., Xu L., Zhang S., Feng L., Cheng L., Xu H., Liu Z., Peng R. Graphene oxide–silver nanocomposite as a highly effective antibacterial agent with species-specific mechanisms. ACS Appl. Mater. Interfaces 2013, 5, 3867–3874.

Thebo K. H., Qian X., Zhang Q., Chen L., Cheng H.-M., Ren W. Highly stable graphene-oxide-based membranes with superior permeability. Nat. Commons. 2018, 9, 1–8.

Ukpaka C. P., Ugiri A. C. Biodegradation kinetics of petroleum hydrocarbon in soil environment using Mangnifera indica seed biomass: a mathematical approach. Chem. Int. 2022, 8, 77–88.

Ullah S., Campéon B. D. L., Ibraheem S., Yasin G., Pathak R., Nishina Y., Anh Nguyen T., Slimani Y.,Yuan Q. Enabling the fast lithium storage of large-scalable γ-Fe2O3/Carbon nan architecture anode material with an ultralong cycle life. J. Ind. Eng. Chem. 2021, 101, 379–386.

Ursino C., Castro-Muñoz R., Drioli E., Gzara L., Albeirutty M. H., Figoli A. Progress of nanocomposite membranes for water treatment. Membranes 2018, 8, 18.

Vi T. T. T., Rajesh Kumar S., Rout B., Liu C.-H., Wong C.-B., Chang C.-W., Chen C.-H., Chen D. W., Lue S. J. The preparation of graphene oxide-silver nanocomposites: the effect of silver loads on Gram-positive and Gram-negative antibacterial activities. Nanomaterials 2018, 8, 163.

Whang T.-J., Huang H.-Y., Hsieh M.-T., Chen J.-J. Laser-induced silver nanoparticles on titanium oxide for photocatalytic degradation of methylene blue. Int. J. Mol. Sci. 2009, 10, 4707–4718.

Yang K., Huang L.-J., Wang Y.-X., Du Y.-C., Zhang Z.-J., Wang Y., Kipper M. J., Belfiore L. A., Tang J.-G. Graphene oxide Nano filtration membranes containing silver nanoparticles: tuning separation efficiency via nanoparticle size. Nanomaterials 2020, 10, 454.

Zaman Q. u., Anwar S., Mehmood F., Nawaz R., Masood N., Nazir A., Iqbal M., Nazir S., Sultan K.Experimental modeling, optimization and comparison of coagulants for removal of metallic pollutants from wastewater. Z. Phys. Chem. 2021, 235, 1041–1053.

Downloads

Published

2024-06-30

How to Cite

Assembling And Structural Identification of Graphene and Brophene Silver Oxide-Based Nano Composites for Environment Protection and Photo Catalysis and Treatment of Lethal Material. (2024). International Research Journal of Management and Social Sciences, 5(2), 507-523. https://irjmss.com/index.php/irjmss/article/view/335

Similar Articles

11-20 of 164

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)