

Computational Technique 3D-QSPR Applied on FBAS By Using CoMFA Technique

Mahwish
University of Karachi, Pakistan

Syed Ishrat Ali
Government College University Hyderabad, Pakistan.

Nosheen Ahmed
Government Degree Girls College Buffer Zone, Karachi, Pakistan
Email: nosh_ag@hotmai.com

Mushtaque Hussain
Government College University Hyderabad, Pakistan

Received on: 25 -07-2024

Accepted on: 26- 08 -2024

Abstract

CoMFA (Comparative Molecular Field Analysis) is a 3D QSAR technique based on data from known active molecules. To apply CoMFA, all that is needed are the activities and the 3D structures of the molecules. 3D-QSPR studies are certainly of great importance in different branches of chemistry. This technique leads to locate the close relationship between bulk properties of compounds and their molecular structure.

Keywords: 3D QSAR, CoMFA, Computational Technique

1. Introduction

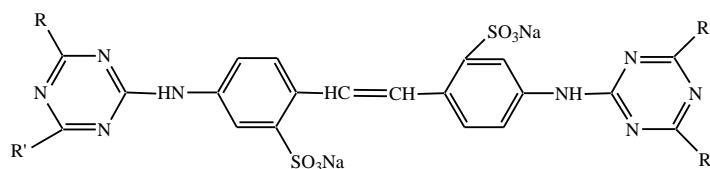
CoMFA (Comparative Molecular Field Analysis) is a 3D QSAR technique based on data from known active molecules. CoMFA can be applied, as it often is, when the 3D structure of the receptor is unknown. To apply CoMFA, all that is needed are the activities and the 3D structures of the molecules. 3D-QSPR studies are certainly of great importance in different branches of chemistry. This technique leads to locate the close relationship between bulk properties of compounds and their molecular structure.

One of the most important technique used to predict different properties of a molecule initiate from information of its molecular structure is known as three-dimensional quantitative structure property relationship (3D-QSPR) [1-2]. 3D-QSPR study has great importance in pharmaceutical chemistry, medicinal chemistry and drug discovery [3-4].

This technique is used to find the close relationship between properties of compound and its molecular structure. Once the model is developed then it can be used to predict the properties

of unknown molecule.

2. Experimental work


In this research 3D-QSPR technique with the help of CoMFA was applied on the following sets of FBAs.

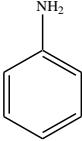
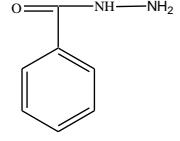
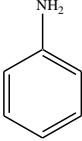
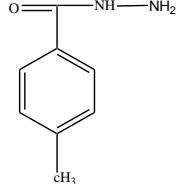
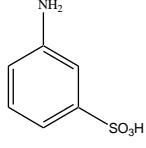
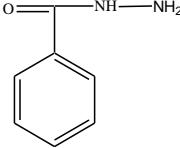
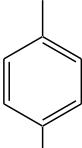
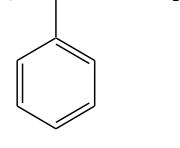
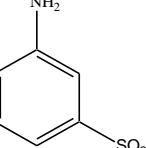
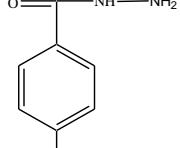
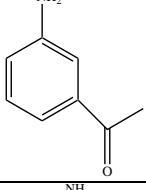
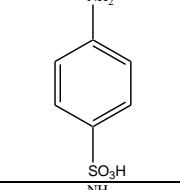
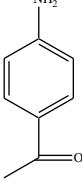
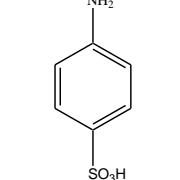
Data set 1: Sixteen compounds (**M₁**-**M₁₆**) were provided from our synthesized FBAs.

Data set 2: Ten compounds were taken from [5-6].

Complete data of 26 compounds is given in **Table 1.1** and **1.2**.

Table 1.1:- Structures of Fluorescent Brighteners and their Absorptivity's (dm³mol⁻¹cm⁻¹×10⁴).

S. No.	Sample Code	R	R'
01	M₁		
02	M₂		
03	M₃		
04	M₄		















Computational Technique 3D-QSPR Applied on FBAS By Using CoMFA Technique

05	M₅		
06	M₆		
07	M₇		
08	M₈		
09	M₉		
10	M₁₀		
11	M₁₁		

Computational Technique 3D-QSPR Applied on FBAS By Using CoMFA Technique

12	M₁₂		
13	M₁₃		
14	M₁₄		
15	M₁₅		
16	M₁₆		
17	5a		
18	5b		$\text{H}_2\text{N}—\text{cH}_2—\text{cH}_2—\text{OH}$
19	5c		$\text{H}_2\text{N}—\text{cH}_2—\text{cH}_2—\text{OH}$

Computational Technique 3D-QSPR Applied on FBAS By Using CoMFA Technique

20	5d		
21	5e		
22	K5I		
23	K5II		
24	K5III		
25	K5IV		
26	K5V		

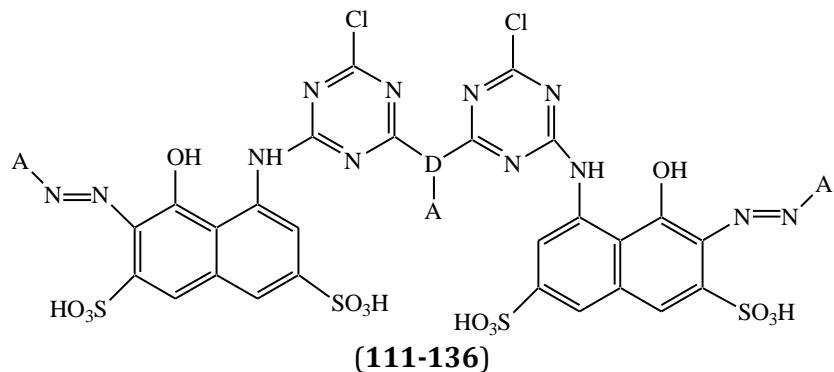
S. No.	Sample Code	R	R'	Absorptivity dm ³ mol ⁻¹ cm ⁻¹ $\times 10^4$

Computational Technique 3D-QSPR Applied on FBAs By Using CoMFA Technique

01	M₁	m-aminoacetophenone	diethanol amine	14.0
02	M₂	p-aminoacetophenone	diethanol amine	8.10
03	M₃	m-aminoacetophenone	monoethanol amine	2.50
04	M₄	p-aminoacetophenone	monoethanol amine	4.10
05	M₅	m-aminoacetophenone	morpholine	4.70
06	M₆	p-aminoacetophenone	morpholine	8.70
07	M₇	m-aminoacetophenone	p-aminosulfonic acid	2.90
08	M₈	p-aminoacetophenone	p-aminosulfonic acid	5.10
09	M₉	m-aminoacetophenone	m-aminosulfonic acid	8.10
10	M₁₀	p-aminoacetophenone	m-aminosulfonic acid	7.70
11	M₁₁	m-aminoacetophenone	pyrrole	0.55
12	M₁₂	p-aminoacetophenone	pyrrole	0.85
13	M₁₃	Aniline	pyrrole	0.84
14	M₁₄	p-aminosulfonic acid	pyrrole	0.97
15	M₁₅	m-aminosulfonic acid	pyrrole	0.97
16	M₁₆	p-methoxyaminosulfonic acid	pyrrole	0.96
17	5a	m-aminosulfonic acid	benzoylhydrazine	4.20
18	5b	p-toluidine	diethanol amine	4.00
19	5c	p-toluidine	morpholine	4.20
20	5d	p-toluidine	monoethanol amine	4.10
21	5e	m-toluidine	monoethanol amine	4.10
22	K5I	Aniline	benzohydrazide	4.10
23	K5II	Aniline	p-tolyl-hydrazide	4.00
24	K5III	m-aminosulfonic acid	benzohydrazide	4.50
25	K5IV	p-toluidine	benzohydrazide	4.30
26	K5V	m-aminosulfonic acid	p-tolyl-hydrazide	4.50

Table 1.2:- Statistical results for FBAs extracted by CoMFA analysis

S.No.	Cross-validated correlation coefficient (q ₂)
-------	---


Set 1	-0.288
Set 2	0.32
Set 3	-0.149
Set 4	-0.233
Set 5	-0.474
Set 6	-0.141
Set 7	-0.380
Set 8	-0.379
Set 9	-0.275
Set 10	-0.288
Set 11	-0.487
Set 12	-0.175

3. Results and Discussion

The aim of this research was to create a predictive CoMFA model which correlates with the absorptivity of FBAs with the modification in structure of molecule.

A negative correlation has been observed contrary to earlier studies of our group [7]. They confirm the theoretical model existing [7]. The explanation relies to describe the fact that reactive dyes form a covalent linkage with the cellulose fiber to provide considerable fastness properties of reactive dyes while FBAs do not appear to form such a covalent linkage with the fiber they actively adsorb on cellulose surface and poor fastness properties are reported as compare with reactive dyes. Reactive dyes as evident are described in **Table 1.3** and **Table 1.4**.

Table 1.3:- Red reactive dye structures and their absorptivity's

S.No.	Dye Code	Group A	Bridging Moiety "DA"	Absorptivity $\text{dm}^3\text{mol}^{-1}\text{cm}^{-1} \times 10^4$
111	JP-01	anthranilic acid	1,4-phenylenediamine	3.47
112	JP-02	anthranilic acid	1,2-phenylenediamine	5.37

Computational Technique 3D-QSPR Applied on FBAS By Using CoMFA Technique

113	JP-03	anthranilic acid	1,3-phenylenediamine	5.30
114	JP-04	anthranilic acid	diaminostilbene-2,2'-disulfonic acid	4.29
115	JP-05	anthranilic acid	4,4'diaminebenzoanilide	3.74
116	JP-06	anthranilic acid	Ethylene-1,2-diamine	4.94
117	JP-07	4- β -sulphatoethyl-sulfonylaniline	1,4-phenylenediamine	5.43
118	JP-08	4- β -sulphatoethyl-sulfonylaniline	1,2-phenylenediamine	6.21
119	JP-09	4- β -sulphatoethyl-sulfonylaniline	1,3-phenylenediamine	5.81
120	JP-10	4- β -sulphatoethyl-sulfonylaniline	diaminostilbene-2,2'-disulfonic acid	5.49
121	JP-11	4- β -sulphatoethyl-sulfonylaniline	4,4'diaminebenzoanilide	4.95
122	JP-12	4- β -sulphatoethyl-sulfonylaniline	Ethylene-1,2-diamine	6.32
123	JP-13	anthranilic acid	1,4-phenylenediamine	4.67
124	IS-14	Aniline	diaminostilbene-2,2'-disulfonic acid	2.95
125	IS-15	benzene-m-aminosulfonic acid	diaminostilbene-2,2'-disulfonic acid	1.85
126	IS-16	benzene-m-aminosulfonic acid	1,4-phenylenediamine	0.71
127	IS-17	benzene-p-aminosulfonic acid	1,4-phenylenediamine	1.95
128	IS-18	Aniline	1,4-phenylenediamine	0.37
129	IS-19	p-toluidine	1,4-phenylenediamine	0.25

Computational Technique 3D-QSPR Applied on FBAS By Using CoMFA Technique

130	IS-20	p-toluidine	diaminostilbene-2,2'-disulfonic acid	1.92
131	IS-21	p-toluidine	1,3-phenylenediamine	0.47
132	IS-22	p-toluidine	1,4-phenylenediamine	2.44
133	IS-23	p-toluidine	1,3-phenylenediamine	1.74
134	IS-24	m-toluidine	1,4-phenylenediamine	0.47
135	IS-25	m-toluidine	1,3-phenylenediamine	1.40
136	IS-26	m-toluidine	diaminostilbene-2,2'-disulfonic acid	2.32

Table 1.4:- Actual and predicted absorptivity of red reactive dyes of training and test sets

S.No.	Compounds	Experimental absorptivity	Predicted absorptivity by CoMFA
Training set			
112	JP-02	5.37	5.38
113	JP-03	5.30	5.46
114	JP-04	4.29	4.18
115	JP-05	3.74	3.67
116	JP-06	4.94	4.91
117	JP-07	5.43	5.66
118	JP-08	6.21	6.24
119	JP-09	5.81	5.85
120	JP-10	5.49	5.37
122	JP-12	6.32	6.51
123	JP-13	4.67	4.35
124	IS-14	2.95	2.52
125	IS-15	1.85	1.95
126	IS-16	0.71	0.67
127	IS-17	1.95	2.02
128	IS-18	0.37	0.43
129	IS-19	0.25	0.31
130	IS-20	1.92	1.35
132	IS-22	0.47	0.75
133	IS-23	2.44	2.41
134	IS-24	0.47	1.08
135	IS-25	1.40	1.39

Test set			
111	JP-1	3.47	5.40
121	JP-11	4.95	4.37
131	IS-21	0.47	2.18

4. Conclusion

The aim of this research was to create a predictive CoMFA model which correlates with the absorptivity of FBAs. A negative correlation has been observed. The explanation relies to describe the fact that FBAs do not appear to form such a covalent linkage with the fiber they actively adsorb on fiber surface and do not exhibit high value of absorptivity.

In future we will try to correlate predictive CoMFA model with other properties of FBAs like color co-ordinates L*, a*, b* and spectroscopic data.

Reference

1. Cao D., Liang Y., Xu Q., Yun, Y., LI H.(2011). Toward better QSAR/QSPR modeling: simultaneous outlier detection and variable selection using distribution of model features. *J. Comput-Aided Mol. Des*, vol 25,pp.1-14
2. Puri S., Chickos J. S., Welsh W. J.(2002).Three-dimensional quantitative structure property relationship (3D-QSPR) models for prediction of thermodynamic properties of polychlorinated biphenyls (PCBs): Enthalpy of sublimation. *J.Chem. Inf. Comput. Sci.* Vol.42, pp.109-116.
3. Katritzky A. R., Fara D. C., Petrukhin R. O., Tatham D. B., Maran U., Lomaka A., Karelson M.(2002). The present utility and future potential for medicinal chemistry of QSAR/QSPR with whole molecule descriptors. *Curr. Top. Med.Chem.* Vol.2,pp.1333-1356.
4. Katritzky A. R., Maran U., Lobanov V. S., Karelson M.(2000).Structurally diverse quantitative structure-property relationship correlations of technologically relevant physical properties. *J. Chem. Inf. Comput. Sci.* Vol.40,pp.1-18.
5. Hussain M, Khan K.M., Ali S. A., Parveen R., Shim W. S.(2009). Symmetrically substituted 4,4'-bis-(1,3,5-triazinylamino)stilbene-2,2'-disulfonate derivatives as fluorescent brighteners. *The Open Textile Journal*, Vol.2,pp.53-58.
6. Hussain M, Khan K.M., Ali S. A., Parveen R., Shim W. S.(2009).Synthesis and properties of symmetrically substituted 4,4'-bis-(1,3,5-triazinyl)-diamino stilbene -2,2'-disulfonic acid derivatives as UV absorbing and fluorescent whitening agents. *Fibers and Polymers*. Vol.10,pp. 407-412.
7. Mahmood U., Rashid S., Ali S.I.,Parveen R.,Qasmi Z, Ambreen N., Khan K. M.,Perveen S. W.(2011). Voelter, 3D-QSPR method of computational technique applied on red reactive dyes by using CoMFA strategy, *International Journal of Molecular Sciences*, Vol.12, pp.8862-8877.